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Summary

Darwin [1] hypothesized that sexes in a species should

be similar unless sexual selection, fecundity selection, or
resource partitioning has driven them apart. Male dwarfism

has evolved multiple times in a range of animals, raising
questions about factors that drive such extreme size dimor-

phism [2–4]. Ghiselin [5] noted that dwarf males are more
common among smaller marine animals, and especially

among sedentary and sessile species living at low den-
sities, where mates are difficult to find, or in deep-sea envi-

ronments with limited energy sources. These benefits of
male dwarfism apply well to Osedax (Annelida: Siboglini-

dae), bone-eating marine worms [6]. Osedax males, notable
for extreme sexual size dimorphism (SSD), are develop-

mentally arrested larvae that produce sperm from yolk re-

serves. Harems of dwarf males reside in the lumen of the
tube surrounding a female. Herein, we describe Osedax

priapus n. sp., a species that deviates remarkably by pro-
ducing males that anchor into, and feed on, bone via

symbiont-containing ‘‘roots,’’ just like female Osedax.
Phylogenetic analyses revealed O. priapus n. sp. as a

derived species, and the absence of dwarf males represents
a character reversal for this genus. Some dwarf male fea-

tures are retained due to functional and morphological
constraints. Since O. priapus n. sp. males are anchored in

bone, they possess an extensible trunk that allows them
to roam across the bone to contact and inseminate females.

Evolutionary and ecological implications of a loss of male
dwarfism are discussed.

Results and Discussion

Molecular Taxonomy and Phylogeny

Both male and female specimens of Osedax priapus n. sp.
(Figure 1) were sequenced for DNA analysis. Mitochondrial cy-
tochrome c oxidase subunit I (COI) sequences from ten spec-
imens (six females and four males; Monterey Bay) showed
a maximum pairwise uncorrected distance of 1.2%. Eight
distinct haplotypes formed a single parsimony network (Fig-
ure 2A, rectangle) shared among the sexes.

Phylogenetic analyses of concatenated sequences from five
genes recovered generally congruent phylogenies (Figure 2B).
*Correspondence: grouse@ucsd.edu
Osedax priapus n. sp. always clustered as sister group to O.
greenpalp and O. yellowpatch, designated here as clade I.
The following minor topological variations were probably due
to missing data (Table S1 available online): (1) arrangements
of O. mucofloris, O. japonicus, O. orange collar, and O. yellow
collar; (2) relationships within the ‘‘nudepalp’’ clade; (3) place-
ment of O. deceptionensis; and (4) placement of the nudepalp
clade (clade II) with respect to clade I. The Gblockedmaximum
parsimony analysis placed clade II (less O. deceptionensis) as
sister to the remaining Osedax terminals and uniquely placed
O. deceptionensis as sister to clade III-V species. Neverthe-
less, all analyses placed frenulate siboglinids as sister group
to Osedax.
Taxonomy

Siboglinidae Caullery, 1914.
Osedax priapus new species.
(Figures 1 and S1–S6.)
Male holotype (Scripps Institution of Oceanography

Benthic Invertebrate Collection [SIO-BIC] A4609) from fur
seal bone, 740 m, in Monterey Submarine Canyon, California
(Figure S1). Paratypes (SIO-BIC A4600–A4608 and A4610–
A4616) from fur seal, an elephant seal (also Monterey Canyon,
633 m depth), and cow bones deployed at Hydrate Ridge,
Oregon at 610 m.
Brief Description. Holotype (Figure 1E) in life with extensible

trunk, yellow patch ventrally at anterior end, just behind pro-
stomium. Two palps with pinnules (Figures 1A, 1B, 1D, S2A,
S5F, and S6A–S6D). Seminal vesicle dorsally behind crown
(Figures 1A, 1B, 1D–1F, S2C, S2H, S2I, S5A, and S6B–S6D),
filled with white sperm mass (Figures 1A, 1B, 1D–1F, and
S2B-S2D). Sperm free-swimming, with spirally grooved elon-
gate head (Figures S2E and S2F) exit through anterior pore.
Seminal vesicle transitions to thin sperm duct along trunk
dorsal surface (Figures 1E, S6D, and S6H) to irregularly
shaped testis sac (normally inside bone), 0.64 mm by
0.33mm in holotype (Figures 1E and 1F). Testis sac contains
masses of developing sperm (Figures 1G and S4). Small
lobe-like roots extend from testis sac (Figures 1E and 1F).
Bacteriocyte layer beneath epidermis of testis sac and roots
houses bacteria (Figure S4C). Bacterial 16S rDNA sequences
from Monterey male and female specimens fell in the Rs1 [8]
clade of symbionts and the Rs2 clade for an Oregon
male specimen (GenBank accession numbers KP119598–
KP119602). No chaetae or obvious segmentation in males
or females. Females have four palps and a tube-like oviduct
like other Osedax females (Figures 1H, 1I, and S5). Spawned
eggs 72 by 53 mm (n = 5).
Remarks. Osedax priapus n. sp. is the only Osedax

with males that approach female sizes (Table 1), have
palps (though only two), and grow bone-penetrating roots.
Both sexes host symbiotic bacteria, unlike the dwarf
males [10]. Time-lapse photos of a live O. priapus n. sp.
male showed it extending from a contracted length of
2mm out to 15 mm (Figure S5), thus presumably making it
capable of delivering sperm bundles to nearby females.
Though unobserved, females may have similar range of
extensibility.
Etymology. Latin Priapus or Greek Priapos (Priapo2) for the

god of procreation and personification of the phallus.
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Figure 1. Osedax priapus n. sp. Male and Female

Anatomy

(A) Lateral view of anterior trunk and pair of palps

of a male (paratype, SIO-BIC A4613), photo-

graphed in situ on bone (b). The anteriodorsal

seminal vesicle (sv) is swollen with sperm. The

small ventral prostomium (pr) has yellow pigment

and precedes the two palps (pa).

(B) Dorsal view of same male as in (A), showing

seminal vesicle and opening (arrow). Pinnules

(pi) line the dorsal sides of the palps.

(C) Ventral view of same male as in (A), showing

pointed prostomium and yellow pigment patch.

Ventrally, the palps are smooth.

(D) Lateral view of male anterior (specimen lost).

An arrow marks the opening for the seminal

vesicle.

(E) Whole male dissected from bone (holotype,

SIO-BIC A4609) showing sperm duct (sd) con-

necting testis sac and seminal vesicle. An arrow

marks the opening for the seminal vesicle.

(F) Lateral view of a whole male partially dis-

sected from bone (paratype, SIO-BIC A4603).

The testis sac (ts) is surrounded by green tissue,

as in female Osedax. Note the extended trunk (tr)

surrounded by transparent tube (tu). Palps were

broken in this specimen.

(G) Interference contrast micrograph of sperma-

tids from the testis sac of the holotype.

(H) Dorsal view of the female (paratype, SIO-BIC

A4614) showing the oviduct (with oocyte) among

the four palps with pinnules oriented dorsally.

(I) Semithin (1 mm) transverse section through the

crown of a female (paratype, SIO-BIC A4607 from

Monterey) showing the four palps with pinnules

oriented dorsally and the central (dorsal) oviduct,

typical of most other female Osedax.

See also Figures S1–S6.
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Osedax Body Sizes

Outgroups and siboglinid relatives of Osedax have similar-
sized sexes [11, 12]. Table 1 documents body-size variation
of Osedax species examined to date. Dwarf males were pre-
viously reported for O. rubiplumus, O. frankpressi, O. roseus,
O. ‘‘spiral,’’ O. orange collar, and O. antarcticus [6, 13–16]
and, although initially not found, are now also known for
O. mucofloris and O. japonicus [17, 18]. Herein, we document
dwarf males in five additional species of Osedax: O. whitecol-
lar, O. nudepalpE, O. nudepalpG, O. yellowcollar, and O. yel-
lowpatch (Figure S7). Males are unknown for nine other known
species.

Transformation ofmale and female sizes onto themaximum-
likelihood tree topology revealed that the most recent com-
mon ancestor (MRCA) of Osedax probably produced dwarf
males (Figure 3; proportional likelihood R 95%). Thus, the
bone-eating adult males of Osedax priapus n. sp. represent a
reversal of the pedomorphic dwarf condition. A single-most-
parsimonious reconstruction for this character (not shown) re-
sulted in the same evolutionary pattern. We assessed whether
the absence of dwarf males is ancestral for Osedax by con-
straining O. priapus n. sp. as sister group to other Osedax.
The AU test showed this constrained
tree (2ln L 33849.96303) was signifi-
cantly worse (p < 0.05) than the uncon-
strained tree (2ln L 33782.99460).

Analysis of female body size (Fig-
ure 3A) indicated that larger and smaller
females arose independently from medium-sized ancestor
several times, although other scenarios are possible. For
instance, the MRCA of clade I (O. priapus n. sp. plus O. green-
palp and O. yellowpatch) might have been medium sized, but
the proportional likelihood was only 43%. Missing female
size data, especially for many nudepalp species, were largely
responsible for ambiguities. Unlike the extreme sexual size
dimorphism (SSD) of other species, O. priapus n. sp. males
are approximately one-third of the female volume. Interest-
ingly, Osedax priapus n. sp. produces relatively small females
(Table 1).

Atavism, but Constrained by Dwarf Ancestry
Our results suggest that the MRCA of Osedax had extreme
SSD, with O. priapus n. sp. showing a reversal from this
condition (Figure 3). This is one of the first times that the
loss of dwarf males has been demonstrated among animals.
Where phylogenetic studies have been done on other animal
groups, the occurrence of dwarfs is arguably derived, e.g., in
echiuran annelids [19]. Often, dwarf males have appeared
independently multiple times in a clade, as in anglerfish
[20], barnacles [21, 22], and, arguably, in xylotrophic bivalves



A

B

Figure 2. Osedax Phylogenetic Analyses

(A) COI haplotype network for ten Osedax pria-

pus n. sp. individuals from Monterey Bay.

(B) Osedax multigene phylogeny with Cirratulus

cirratus as outgroup. The RAxML tree was based

on MAFFT-aligned, Gblocked, and partitioned

data set of five gene segments. The maximum

parsimony jackknife support (JS), maximum like-

lihood bootstrap support (BS), and Bayesian

posterior probability (PP) are listed (vertically)

at each node. Asterisks indicate BS R 95% and

PP R 0.99. Missing values indicate BS < 50%

and PP < 0.70. Five major Osedax clades are

distinguished, following Vrijenhoek et al. [7].
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[23–25]. Orb-web spiders (Nephilidae) show marked SSD,
females being much larger than males, with a complex his-
tory of increases and decreases in size for both sexes [26].
However, the loss of dwarf males in O. priapus n. sp. is
more than simple size change. It signifies a release from
pedomorphosis and a reversion to the ancestral siboglinid
condition of little SSD. Dollo’s law claims that lost complex
traits do not reappear because the responsible genes will,
over time, mutate and become nonfunctional [27]. Yet,
notable examples exist (reviewed in [28, 29]). For instance,
parthenogenetic orabatid mites gave rise to sexually repro-
ducing species [30], and squamate reptiles that evolved
viviparity early in their evolution show multiple reversions to
oviparity [31].

Atavism is incomplete in O. priapus males, however.
Although resembling females, the males exhibit clear differ-
ences stemming from their ancestry as dwarfs. The dwarf
males of other Osedax species reside
in a female’s tube and have free sperm
in an anterior seminal vesicle [14, 32].
In contrast, other siboglinids package
their sperm [33, 34]. Like the dwarfs,
O. priapus males still store free sperm
(Figure S2) in a seminal vesicle in the
head. The free sperm are unlikely to
swim well in seawater [35], constraining
O. priapus males to direct sperm trans-
fer, which is accomplished by their
extensible trunk that functions as a
penis. Placement of the large anterodor-
sal seminal vesicle appears to preclude
development of the dorsal palps, as
they would likely prevent efficient sperm
transfer to females. Most female Ose-
dax, including O. priapus (though not
O. spiral), have four palps, but males of
O. priapus only have two ventral palps.
Juvenile O. japonicus (Figures 1g–1k in
[18]) show initial appearance and devel-
opment of ventral palps while the dorsal
palps are buds. We hypothesize that the
anterodorsal sperm vesicle precludes
development of the dorsal palps.

Sexual Conflict

Osedax male dwarfism eliminates
competition with females over food
and space, namely scattered bones on
the ocean floor. Avoiding sexual
conflicts over resources generally allows females to attain
greater body sizes and fecundities [5, 36, 37], as seen in
most Osedax species. Thus, fertility selection should favor
fast-growing females that rapidly exploit sunken bones,
whereas natural selection favors the evolution of nonfeeding
dwarf males [9]. However, Osedax priapus n. sp. males can
achieve sizes similar to females only because they compete
with them to occupy and exploit bones as a food resource.
This raises the obvious question as to why extreme SSD is

lost in O. priapus n. sp. yet has not occurred in other Osedax
species. Vrijenhoek et al. [9] proposed that extreme SSD arose
in Osedax primarily in accordance with arguments presented
by Ghiselin [5]. In particular, Ghiselin suggested that male
dwarfism is more likely to evolve when most or all of the
following factors are in place: (1) males don’t compete directly
for females, (2) a sessile lifestyle, (3) limited resources (i.e.,
bones), and (4) it is difficult to find a mate. Small males with



Table 1. Body Sizes of Male and Female Osedax

Osedax

Female Volume

(mm3)

Female

Size

Male Volume

(mm3)

SSD

Ratioa

antarcticus 18.13 (‘‘mean’’) M 0.012 (n = 1) 1,510

crouchi ? palps and

trunk only

? ? ?

deceptionensis 0.40 (n = 1) S ? ?

frankpressi 114.25 (n = 3) L 0.001056

(n = 10)

108,191

japonicus 15.39 M 0.000314 49,012

mucofloris 9.30 (n = 2) M ? ?

nordenskjoeldi ? palps and

trunk only

? ? ?

rogersi ? palps only ? ? ?

roseus 14.64 (n = 3) M 0.000277

(n = 10)

52,852

rubiplumus 202.00 (n = 2) L 0.02 (max)b 10,100

rubiplumus 202.00 (n = 2) L 0.0029 (min)b 69,655

MB16 no specimens ? ? ?

MB17 66.70 (n = 1) L ? ?

nudepalpA 3.60 (n = 3) M ? ?

nudepalpB ? palps only ? ? ?

nudepalpC ? palps only ? ? ?

nudepalpD 6.24 (n = 2) M ? ?

nudepalpE 1.27 (n = 3) S 0.00374 (n = 1) 339

nudepalpF 34.03 (n = 1) M ? ?

nudepalpG 0.80 (n = 1) S 0.00223 (n = 1) 360

greenpalps 4.06 (n = 2) M ? ?

orangecollar 12.47 (n = 3) M 0.00062 (n = 2) 20,112

spiralc 55.10 (n = 2) L 0.001209 (n = 6) 45,492

yellowcollar 9.44 (n = 3) M 0.00068 (n = 1) 13,882

yellowpatch 4.33 (n = 3) M 0.0015 (n = 1) 2,884

whitecollar 3.37 (n = 2) M 0.0022 (n = 1) 1,532

priapus n. sp. 0.86 (n = 5) S 0.267 (n = 7) 3.2

Volumes were obtained from fixed and typically contracted specimens). No

voucher material exists for OsedaxMB16. Estimates for female volumes for

O. antarcticus, O. deceptionensis O. mucofloris, and O. japonicus are from

the descriptions. Female body size categories are based on body volume

estimates L R 50 mm3; M = 3–50 mm3 and S % 2 mm3. See also Figure S7.
aSSD ratio of female to male volumes.
bOsedax rubiplumus males grow and expand in volume. Values for the vol-

ume of largest males and for smallest males with sperm are used here (e.g,

Figure 1D in [9]).
cFemale trunk volume only.
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precocious sexual maturity via pedomorphosis are often ad-
vantageous under these circumstances [5]. All of these factors
are generally found with in Osedax, variation exists, especially
in body size (Table 1), which might explain the extraordinary
reversal of SSD in O. priapus n. sp.

A sessile life history, difficulty in finding a mate, and an
absence of male-male competition probably hold for
O. priapus, and sunken bones are most likely a limited
resource. Osedax species with larger females can rapidly
occupy the bones and block further access to settling larvae
with their plumes (e.g., O. roseus [13]). However, the small
size of O. priapus females (Table 1 and Figure S4) might result
in less competition for space, allowing the evolution of bone-
eating males. By feeding and growing, a male can produce
more sperm than a dwarf that is limited by maternal yolk sup-
ply. Also, a bone-eating adult male can access multiple fe-
males, whereas a dwarf male is confined to a single female’s
tube. Notably, O. priapus still show a degree of SSD, as the
males have only one-third the volume of females (Table 1);
thus, they might not compete as much for bone as females.
Nonetheless, other Osedax species also have relatively small
females and yet retain dwarf males (Table 1). Special
circumstances might have favored a ‘‘release’’ from dwarfism
inO. priapus, and further knowledge about the ecology and life
history acrossOsedaxwill be valuable. For instance, we do not
know the longevity of O. priapus n. sp. females with regard to
other Osedax. If they have much shorter lifespans, they would
not be able to effectively recruit larvae to make dwarf male
harems. Also, O. priapus n. sp. has the smallest eggs of any
Osedax, and it is thematernally provided yolk that dwarf males
need tomake sperm,whichwould be limited ifO. priapus n. sp.
had dwarf males. Also,O. priapus n. sp. has only been found to
date on small bones and may be a specialist on these ephem-
eral habitats, which would favor males and females being pre-
sent concurrently.

Environmental Sex Determination or Genetic Sex

Determination?
Sex determination in annelids is generally thought to be ge-
netic (GSD) [38–40]. Environmental sex determination (ESD)
and male dwarfism occur in some echiuran annelids [41],
prompting a similar model for Osedax, in which larvae that
settle on bone mature as females, whereas larvae that settle
on females arrest development and transform into males [6].
Various lines of evidence are consistent with ESD for Osedax
[9, 13]. A study of development inO. japonicuswas interpreted
as support for ESD [18], where larvae were added to aquaria
with females living on bones. Some larvae settled on females
and metamorphosed into dwarf males. Intriguingly, Miyamoto
et al. (Figure 1b in [18]) clearly illustrate a dwarf male, full of
spermatids, that they identified as an ‘‘early juvenile . [that
can] . crawl on bone.’’ If a dwarf male was indeed found
crawling on bone, rather than a female, a role for GSDmay still
exist in Osedax, as it apparently does in Bonellia [41]. The pre-
sent discovery of nondwarf males in O. priapus further com-
plicates our understanding of sex determination in Osedax.
Further study is warranted, and a good first step may be a kar-
yotype analysis of males and females.

Variable Sexual Size Dimorphism in Osedax
Here we provide for the first time extensive data on the SSD
across Osedax (Table 1 and Figure 3). Female O. frankpressi,
which are more than 100,000 times the volume of males,
represent one of the greatest instances of SSD found in ani-
mals to date. Comparable candidates for such extreme SSD
include a blanket octopus (Tremoctopus violaceus) with a
body size differential of 40,000 in favor of females [42], and
an anglerfish (Ceratias holboelli) in which females can weigh
half a million times more than the male before he fuses with
her and becomes parasitic [43]. We also show here data for
five species in which females are >20,000 larger than males.
Other Osedax show much less SSD. The nudepalp clade
shows the least SSD, apart from O. priapus, with males
ranging from 339–1,510 times smaller than females. In part,
this is because the males are larger than most other Osedax.
This is shown here for O. nudepalpE, which reaches 400 mm
in length (Figure S7F), a size also found for males of
O. antarcticus [16].
As well as the clear evidence from the five-gene phylogeny,

bone-eating O. priapus n. sp. males show signs of dwarf male
ancestry in their reproductive system. We also document the
occurrence of dwarf males and the variability in adult body
size for females and males across Osedax. Our explanation
for the loss of extreme SSD in O. priapus n. sp. lies in a
decrease in competition for habitat, i.e., bone.Osedax priapus
n. sp. has among the smallest females of all Osedax species



A B Figure 3. Transformation of Female and Male

Body Sizes in Osedax

Body sizes were traced on tree topology ex-

tracted from multigene phylogeny for Osedax

(from Figure 2B). Osedax priapus n. sp. se-

quences were reduced to a single terminal

branch. The colored circles at each node indicate

the marginal probabilities for each character

state; asterisks at a node indicate that propor-

tional likelihood of a dominant character state

was 95% or greater.

(A) Female body sizes (large, medium, and small).

The plesiomorphic condition for Osedax females

is ambiguous, as large and small body sizes

appear to have arisen several times indepen-

dently from a medium-sized ancestor. Further

data on the body size of other species are needed

to resolve the ambiguities.

(B) Male body sizes (dwarf and nondwarf). The

presence of pedomorphic dwarf males is plesio-

morphic for Osedax (enlarged node, labeled

most recent common ancestor, MRCA), whereas

the large adult males of Osedax priapus n. sp.

constitute a character reversal and loss of

extreme sexual size dimorphism.

See also Figure S7.
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discovered to date. We hypothesize that this reduction al-
lowed greater access to smaller more ephemeral bones and
lessened the selective pressures that favored the evolution
of dwarf males in the genus. Advantages for male Osedax to
become bone eaters include (1) not being sperm limited by
maternal yolk provisions, (2) not being limited to a single
mate, and (3) arriving and developing simultaneously with fe-
males, which avoids the risk of arriving too late on ephemeral
bones.

Experimental Procedures

Collection details are in the Supplemental Information, as are light mi-

croscopy, histology, and confocal laser scanning microscopy protocols,

which were published previously [13, 14]. Specimens are lodged at the

Benthic Invertebrate Collection at SIO. Nuclear 18S rDNA, 28S rDNA,

and Histone-3 genes and mitochondrial COI and16S rDNA genes were

sequenced for the new species, and other specimens are available in

GenBank under accession numbers KP119554–KP119597 (Table S1).

DNA sequencing was as previously reported [7]. Eleven Osedax priapus

specimens were sequenced, ten from Monterey Bay and one (male)

from Oregon. We also obtained sequences for five genes from a previ-

ous unknown species, Osedax ‘‘nudepalpG,’’ and added new sequences

for Osedax MB16 and MB17 from Monterey [8]. Data analysis largely

followed previous studies; see the Supplemental Experimental

Procedures.

Accession Numbers

TheGenBank accession numbers forOsedax and other annelids (44 new se-

quences) and their bacterial symbionts (five new sequences) reported in this

paper are KP119554–KP119602. Details are in Table S1.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, detailed systematic description, seven figures, and one table and

can be found with this article online at http://dx.doi.org/10.1016/j.cub.

2014.11.032.
Author Contributions

G.W.R. discovered the new species and conducted the photography, mi-

croscopy, and data analyses. N.G.W. generated most of the new DNA se-

quences. K.W. performed the confocal microscopy. R.C.V. provided the

critical specimens and, with G.W.R., composed the evolutionary context

of this study. All authors participated in writing the manuscript.

Acknowledgments

Thanks to Erika Raymond, the captain and crew of the R/V Western

Flyer, and pilots of ROV Doc Ricketts for deployment and recovery of

the seal. Chief Scientist L. Levin, the captain and crew of the R/V

Atlantis, and pilots of HOV Alvin and ROV Jason II are thanked for the

deployment and recovery of cow and whale bones (prepared by Danwei

Huang and Jose Carvajal) at Hydrate Ridge, Oregon. Jose Carvajal and

Shannon Johnson provided additional DNA sequences. Susan Rouse

was invaluable in the lab for the initial documentation of Osedax priapus.

Funding was provided by the David and Lucile Packard Foundation

via the Monterey Bay Aquarium Research Institute, by the Scripps Ins-

titution of Oceanography, and the US National Science Foundation to

Lisa Levin and G.W.R. (OCE-0826254 and OCE-0939557). A Freja fellow-

ship through the Faculty of Science, University of Copenhagen sup-

ported K.W.

Received: September 29, 2014

Revised: November 11, 2014

Accepted: November 12, 2014

Published: December 11, 2014

References

1. Darwin, C.R. (1871). The Descent of Man and Selection In Relation To

Sex, Second Edition (London: John Murray).

2. Vollrath, F. (1998). Dwarf males. Trends Ecol. Evol. 13, 159–163.

3. Hedrick, A.V., and Temeles, E.J. (1989). The evolution of sexual dimor-

phism in animals: hypotheses and tests. Trends Ecol. Evol. 4, 136–138.

4. Fairbairn, D.J. (2013). Odd Couples: Extraordinary Differences between

the Sexes in the Animal Kingdom (Princeton: Princeton University

Press).

http://dx.doi.org/10.1016/j.cub.2014.11.032
http://dx.doi.org/10.1016/j.cub.2014.11.032


241
5. Ghiselin, M.T. (1974). The Economy of Nature and the Evolution of Sex

(Berkeley: University of California Press).

6. Rouse, G.W., Goffredi, S.K., and Vrijenhoek, R.C. (2004).Osedax: bone-

eating marine worms with dwarf males. Science 305, 668–671.

7. Vrijenhoek, R.C., Johnson, S.B., and Rouse, G.W. (2009). A remarkable

diversity of bone-eating worms (Osedax; Siboglinidae; Annelida). BMC

Biol. 7, 74.
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